
NASA Technical Memorandum 102455

/

1

Concurrent Processing Adaptation of

Aeroelastic Analysis of Propfans

David C. Janetzke

Lewis Research Center

Clevelandl Ohio

and ._ _

Durbha V. Murthy

University of Toledo
Toledo, Ohio

January 1990

ADAPTA, I-IO_,|C.,F A- C.,LL

pROPFANS (NAe'A) 2t" p

_ --- _,-___.c, bt, _:

uncl as

G3/39 025t_ I_'

..... _1 !

P_

CONCURRENT PROCESSING ADAPTATION OF AEROELASTIC

ANALYSIS OF PROPFANS

David C. Janetzke
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

and

Durbha V. Murthy*
University of Toledo
Toledo, Ohio 43606

Abstract

O

t_
I

This paper reports on a study involving the adaptation of an advanced

aeroelastic analysis program to run concurrently on a shared memory multiple

processor computer_ The program uses a three-dimensional compressible unsteady

aerodynamic model and blade normal modes to calculate aeroelastic stability and

response of propfan blades. The identification of the computational parallelism within

the sequential code and the scheduling of the concurrent subtasks to minimize

processor idle time are discussed. Processor idle time in the calculation of the

unsteady aerodynamic coefficients was reduced by the simple strategy of

appropriately ordering the computations. Speedup and efficiency results are

presented for the calculation of the matched flutter point of an experimental propfan

model. The results show that efficiencies above 70 percent can be obtained using the

present implementation with 7 processors. The parallel computational strategy

described here is also applicable to other aeroelastic analysis procedures based on

panel me't hods.

*NASA Resident Research Associate at Lewis Research Center (work funded under
NASA Grant NAG3-742).

Introduction

It is now clear that the analysis and design of practical engineering systems in

the future will make extensive us(., of concurrent l)rocessing on c.omputers with

multiple processors. Parallel processor computers consisting of multiple processors

linked Io one another and running subtasks concurrently are becoming widely

available for large scale scientific and engineering computations (Noor and AthJri,

1987). These computers are being increasingly used to provide the reduction in

effective calculation time (or elapsed time) needed to carry out many real time

applications. A new area of research in computational mechanics is based upon tire

unique architectural features of parallel processing computers.

Aeroelastic analysis of practical aerospace structures has always been a

comp,tationally expensive process. The computational burden is particularly high for

aeroelastic analysis of propfans because of their very complicated geometry (Kaza,

et al 1989; Kaza, et al 1988; Murthy and Kaza, 1989). Automated design and

optimization of aerospace structures requires the aeroelaslic analysis to be

performed many times inside a design iteration loop and it is expected that

conventional sequential processing computers would be inadequate for obtaining

useful results in a reasonable time. The compulational power of the new parallel

processing computer systems offers the aeroelastician an opporlunity to reduce

computational times for analysis so that the aeroelastic analysis can be more fruitfully

used by the designers. This paper presents a concurrent processing adaptation of

an advanced aeroelastic analysis code for propfans. The emphasis is on the

concurrentization of the computationally intensive portion of the aeroelastic analysis

in order to reduce the effective calculation time.

Because of the promise of considerable fuel savings over current turbofan

engines at similar flight speeds, propfans are expected to be the preferred propulsion

2

system of the next generation of transport aircraft. Avoidance of aeroelastic

instabililies is a major part of the design process ol propfans. Prediction of the forced

response of propfans is also an important concern. As part of an effort to study and

predict these inslabilities and the forced response of the propfan blades, an

aeroelastic analysis program called ASTROP3 was developed at the NASA Lewis

Research Center. This program was developed for and was operational ill a

sequential processing environment before it was specifically adapted and

implemented on a parallel processing computer.

The ASTROP3 aeroelastic analysis code was adapted to concurrent processing

on a mulliple instruction multiple data (MIMD) parallel computer wilh shared memory,

i. e., having asynchronous multiple processors. By asynchronous operation, it is

meant that different sels of instructions are executed concurrently and independently

start or finish. In the shared memory architecture, all the processors have accessto

a common global memory. An alternative architecture of a large number of

processors having attached local memories, with data being passed from processor

to processor as needed, is also of great importance. However, the authors anticipate

that rnost of the near-future multiple processor commercial computers will have

shared memory architecture. For example, the commercial success of the

CRAY-XMP, CRAY-2 and ALLIANT computers indicates this trend.

Approaches to Sequential Code Conversion

Given the description of a problem and a computer program which solves the

problem sequentially, optimal gains in performance through parallelism could be

attained perhaps only by a complete reformulation of the solution method from

scratch and a redesign of the computational algorithm to take advantage of the

parallel architecture. The new computational algorithm would typically maximize the

computations that can be done in parallel and minimize those that must be done

sequentially. It would explicitly consider the relationship between the size of the

problem and the number of available processors and optimize the balance of

workloadamong the processors and minimize synchronization delays. This requires

a thorough understanding of the nature el the problem and a considerable investment

in analyzing tile data flow in the solution procedure itself rather than its

implementation in the sequential code. Such an operation is usually prohibitively

expensive and is not likely to be undertaken extensively because of the substantial

investment in many existing sequential computer programs. It may also be

unnecessary because significant gains in performance can often be obtained i)y only

a moderate modification of the sequential code.

Parallelism carl be implemented either at a low-level (fine grain parallelism) or

at a high-level (coarse grain parallelism). A low-level approach introduces

concurrency at the level of elementary operations. It is easier to implement when

powerful compilers that automatically parallelize code are available as on the Alliant

FX/80. The high-level approach introduces concurrency in atop down manner and

generally requires manually changing the computational strategy of the sequential

program and the disabling of the automatic parallelization done by the compiler. The

high level approach is natural when the physics of the problem possesses natural

parallelism in lhe computations. It has the added advantage that the performance

improvements achieved by parallelism are, in a sense, machine-independent. For

example, when a high-level approach is used, the computational strategy developed

for a multiple processor environment can be transported to a multiple computer

environment with interconnections as in multiple workstations on a network. One

disadvantage of this approach is the increased risk of errors due to the disabling of

the conservative parallelization by the compiler and the manual analysis of the data

dependencies among the parallel paths.

For ease of implementationand to serve as a learning exercise, we selected a

high-level approach requiring only a moderate modification of the sequential code.

The key to the high-level approach is tile identification of compulationally intensive

parallel paths in the sequential program and the implementation of concurrent

computation with a minimum of data depen(tency among the individual subtasks. The

goal is to reduce the calculation time in proportion to the number of processors, i.e.,

to achieve linear speedup, as closely as possible. The key to achieving this reduction

is the selection of the parallel paths in the numerical algorithm. Because there is

some cost to concurrentization, a parallel processing implementation gives the most

benefit when the computational time of each of the parallel paths is large and the data

dependencies among lhem are small. Thus the formulation and the computational

strategy of the sequential code must permit the decomposition of the problem

solution into concurrently executable processes (or subtasks), each of which is

compulationally intensive and is fairly independent of the data computed by the other

processes. In this paper, it is shown that the computation of aerodynamic influence

coefficients, commonly used in the computation of unsteady generalized forces in

aeroelastic analyses, fulfills these requirements and thus can be parallelized easily

and in a natural manner.

Propfan Aeroelastic Analysis

The aeroelastic analysis code used in this study is a FORTRAN program called

ASTROP3 and was developed at NASA Lewis Research Center for single rotation

propfans(Kaza et al 1989). This program performs flutter and forced response

analysis of propfans. The implemented version of ASTROP3 incorporates the

enhancements developed by Murthy and Kaza (1989) but is only valid for subsonic

flow. In the following, the analytical procedure used in ASTROP3 is briefly reviewed

to aid in the understanding of the adaptation for concurrent processing. _=

The propfan is assumed to have identical groups of blades symmetrically

distributed about a rigid disk rotating at a fixed speed .(2 in an axial flow of Mach

number M. The linearized aeroelastic equations of motion of the rotor are then

uncoupled for different inler-group phase angle modes. Assuming simple harmonic

vibratory motion with a frequency _,J, and expressing the vibratory motion in each

inter-group phase angle mode as a superposition of assumed mode shapes, the

equations of motion for a given inter-group phase angle t_, can be written in the form

(Kaza el al 1989)

[...._,_2Mg -t- Kg]q = [A(M, u_)]q t-f (1)

where M._],K.q and A(M, c_) are the generalized mass, stiffness and aerodynamic

malrices respectively, f the generalized aeroelastic forcing vector and q the

generalized coordinate vector. The matrix A represents the motion-dependent

aerodynamic forces and the vector f the motion-independent aerodynamic forces.

The matrices in eq. (1) are of order nm where n is the number of blades in each group

and m is the number of assumed structural mode shapes per blade. The

aerodynamic matrix A(M, c,J) is usually valid only for simple harmonic motion of the

airfoil.

The matrices, Mg and Kg are obtained using MSC/NASTRAN, a general purpose

finite element program. A(M, _) and f are obtained using the unsteady aerodynamic

model developed by Williams and Hwang (1986) for subsonic axial flow. The

computational procedure in the unsteady aerodynamic model is briefly reviewed here

as it is necessary to understand the results presented later. Complete description

of the procedure is found in Williams and Hwang(1986).

The unsteady aerodynamic forces are calculated by integrating the unsteady

pressure disturbance over the blade surface. The unsteady pressure disturbances

and the normal velocity over a thin blade are related by an integral equation.

Assuming simple harmonic molion with a frequency o.) in a three-dimensional

potential flow, this integral equation can be written, after appropriate linearization, as

W(P) = - B fAA_(Po) _ [K(P Po)]dAo
(2)

where P and P0 represent points on the blade surface, A represents tile blade

surface, _ is the frequency of blade vibration, B is a constant dependent on flow

conditions and K is a kernel function. Wand&_- are proportional to the normal

velocity and unsteady pressure disturbance respectively.

Eq. (2) was discretized by splitting the blade into n# quadrilateral panels within

each of which &,5 is assumed constant. (See Figure 1). The discretization results

in the algebraic system of equations given by

W = CA_ Or, A_ = c-iw (3)

where W is a vector of the values of W at chosen control points on each of the panels,

_-'%_is a vector of the values of .&_ on each of the panels, and C is a matrix of

aerodynamic influence coefficients given by

_A _? [K(P i Po)]dA 0ciJ = - _2-"_"
)

(4)

where the subscripts i andj refer to the control panel and pressure panel

respectively. In terms of radial coordinate r and chordwise azimuthal coordinate 0, (

Figure 1), eq. (4) can rewrilten as

[K(-Oi-- -00,ri, ro)]rod-(Jodro (5)

The subscripts jLE and jTE refer to the leading and trailing edges of lhe j-lh panel.

The chordwise inlegration in eq. (5) can be perf0rnle(] analytically, so that

cij = DijLE -- DijTE (6)

where

DijLEITE '= _r2JK(-Oi -OOLEITE,ri, ro)dro
rl]

(7)

Thus, the evaluation of the influence coefficient c V requires numerical integration of

the kernel function K in the radial direction only. The kernel function must itself be

evaluated by numerical integration. We refer to rt as the control panel row radius and

r0 as the pressure panel row radius. Because of the analytical integration in the

chordwise direction, the computational effort is nearly independent of the number of

chordwise panels and is approximately proportional to the square of the number of

radial panel rows.

Once the influence coefficients are evaluated, the generalized motion-dependent

force matrix is determined by numerical integration over the blade surface

n

Anm = _-_APjm(_jn dAj (8)

j=l

8

where Apj,n is the pressure differential across the j -th panel, with area dAj, due to

motion in Ihe m-th assumed mode shape, and 5in is the normal displacement of the

blade surface at the control point of the j-th panel in the n-th mode shape. The

motion-ind(;pendc;nt aerodynamic force vector is similarly calculated by

/9

j=-q

where the subscript F represents the assumed forcing distribution.

(9)

The flutter problem for the inter-group phase angle of interest, is solved by

setting the motion-independent aerodynamic force vector f to zero, and finding the

combination ofMand c_for which eq.(1) hasa nontrivialsolution. That is, we solve

the characteristic equation

det[- (_)2Mg + Kg - A(M, (o)] := 0 (10)

for M and ___. The numerical algorithm for solving eq. (10), given the initial guesses

for the critical Mach number and frequency, is described by Murthy and Kaza (1989)

and involves evaluating the aerodynamic matrix a number of times to find the critical

Mach number and frequency. The critical Mach number for the propfan is then the

lowest Mach number at which one of the inter-group phase angle modes flutters.

The forced response problem is solved by evaluating the aerodynamic matrix

at the axial flow Mach number and excitation frequency and the excitation inter-group

phase angle (Kaza et al 1988) and solving eq. (1) for the generalized coordinates, q.

The results presented in this paper were obtained using the SR3C-X2 propfan

rotor with eight identical blades for flutter analysis. The rotational speed was fixed

at 5280 rpm. This rotor was earlier analyzed using ASTROP3 and results were

9

reported by Kazaet al (1989)and Murthy and Kaza (1989), The motion of the blade

is dominated by the first two normal modes of the blade, though up to six normal

modes were used in someof the analysiscases. The bladesurfacewas discretized

such that there were 8 panels in the chordwise direction in each radial row. The

numberof panel rows in the radial directionwaseilher 9 or 17. Thusthe tolal number

of panels was 72 or 136 respectively. The results presented are for the critical

inter-groupphase angle, which at this rotational speed was 225 °. The critical Mach

number and frequency calculated were in the range 0.62-0.65 and 287-295 Hz

respectiw;ly, depending on the number of panels and number of modes usecl in the

analysis. Unless otherwise mentioned, initial guesses of M = 0.5 and _,._= 310 Hz are

used.

Identification of Parallelizable Code

The determination of the aerodynamic influence coefficient matrix C requires the

evaluation of the kernel function repeatedly for different control panel rows and

pressure panel rows on the blade surface and its radial integration as indicated in eq.

(7). In both flutter and forced response problems, the computation of the kernel

function is very expensive as it involves wake integration which requires the

numerical evaluation of an integral with an infinite limit. Thus, the kernel function

computation and hence the evaluation of the aerodynamic influence coefficients is the

dominant contributor to the calculation time required to compute the generalized

unsteady aerodynamic forces. For example, in the case of the SR3C-X2 propfan blade

using 9 radial panel rows and 2 normal modes, the computation of the aerodynamic

influence coefficients consumes 97.1 percent of the time required for the calculation

of the critical Mach number and frequency starting with a moderate initial guess of

M=0.5andc_=310Hz. The computational expense of evaluating the kernel

function by direct numerical integration had prompted several researchers to develop

10

and study efficient and approximate methods of integration. Desmarias (1982)

assessedthe performance of many such methods.

Fortunately, the computation of the influence coefficients possesses a high

degree of parallelism so that an aeroelastic analysis program using a parallel

processing computer would greatly benefit from concurrentization of their

computation. Simply put, the kernel function K(Ar') n r,, ro) in ASTROP3 is evaluated

by interpolation after constructing a table of values for K at various values of AS, and

fixed values ofr_andr 0. The nurnber of values of r iand r0isgiven by tile numberof

panel rows used along the radial direction in the discretization of the planform. Once

the blade geometry, motion and the flow condilions are given, the table of values of

K(&0 n r, ro) at various values of ,'%0i for fixed values of r i and r0 can be computed

independently of the value of the kernel function at other values ofr_andr 0. Thus,

the kernel function K(AO_, r t, ro) carl be evaluated completely in parallel for different

values of r_ and r 0. The radial integration ofeq.(7) can also be performed in parallel

for different values of rl and r 0.

There are of course other parts of the analysis thai can also be done

concurrently, e. g., the computation of the normal velocities for motion in different

mode shapes. However, in this implementation, only the influence coefficienl

computation was concurrentized because the bulk of the computational effort is

expended there. Concurrentizing the olher parts of the analysis would have required

more effort with little potential gain in speedup and efficiency.

Parallel Processing System Description

The parallel processing computer used in this study was an Alliant FX/80. The

FX/80 is classified as a multiple instruction, multiple data (MIMD)computer with

shared memory. It has eight general purpose 64-bit vector processors and twelve

11

general purpose32-bitscalar processors. The vector processorscan work together

to provide concurrent processing on a group of subtaskswithin a single task. The

scalar processors independefltly execute interactive user lobs such as editors and

operating system tasks. All processorsshare a 128 Mb global memory through a

high-speed cache system.

A sirnplified schematic of the system architecture as it pertains to a single

parallel processing task is given in Figure 2. During the course oflhisstudy, seven

of the vector processors were configured to run parallel processing tasks. The

remaining vector processor is used on non-parallel tasks such as compilations and

operating system tasks. Any number of the seven vector processors can oplionally

be used on a parallel processing task. The operating system for the FX/80 is based

on Berkeley UNIX with extensions for parallel processing.

The FORTRAN compiler for the FX/80 can automatically optimize standard

FORTRAN code for scalar, vector and concurrent processing. The compiler does a

data dependency analysis to ensure valid results from the optimization. These

optimizations are selected with options in the compile statement. Any, all or none

of the optimizations can be selected. Additionally, compiler directives may be

inserted in the source code to prohibit or enable specific optimizalions in portions of

the program.

Computer Implementation

For efficient execution of any analysis procedure into a parallel processing

environment, tile following requirements must be ensured: (1) the overhead involved

in implementing the algorithm must remain as low as possible and (2) the idle time

of the available processors must be as low as possible.

12

Reducinq Overhead

extra coding to setup vector processing or

the ASTROP3 code, a

These actions include:

Overhead is that time used in

concurrent processing. For a given program, such as

combination of actions is needed to minimize the overhead.

(1) selective use of compiler options; (2) judicious use of compiler directives; and (3)

alterations to the source code. All of these were used to atlain efficient execution of

ASTROP3 oil the Alliant FX/80.

Various combinations of compiler options were applied to the unmodified

version of the ASTROP3 program to determine the effect on execution time. The

non-selective application of all the compiler optimizations (scalar, vector, and

concurrent) to all the routines resulted in execution times on one or more processors

significantly (over 30 percent) greater than that for a scalar-only optimized run on one

processor. Selective use of vector optimization, guided by familiarity of the code and

profiling results, reduced much of the unnecessary overhead and lowered the

one-processor execution time significantly (over 20 percent). No reduction in

execution time for multiple processors was obtained with concurrent optimization on

the unmodified code.

Significantly improved execution times on multiple processors were obtained

only after modification of the ASTROP3 source code. The computation of influence

coefficients, identified as parallelizable in a previous section, was rendered

concurrent by a few small changes and insertion of appropriate compiler directives

in the code. This reduced the execution time for 7 processors to under 24 percent

of the scalar/vector optimization on one processor.

13

Reducing Idle Time

To further improve processor utilization, the concurrent subtasks must be

scheduled such that the available processors are not left idle for a significantly long

time. When asynchronous execution is allowed, as on the FX/80, the processors are

left idle only when no additional sublask is available to be initiated, that is, as the

concurrent computational phase draws to a close. (The idle time between the

completion of a subtask and tile initiation of a new subtask was found to be

negligible.) If the time required for the execution of each of thesubtasks is known a

priori, as is usually the case in low-level parallelism, a scheduling algorithm could

be devised and processors could be statically allocated so that each subtask is

appropriately assigned to a specific processor to minimize the processor idle time.

This is known as static load balancing. The assignment of subtasks to processsors

at execution time is, on the other hand, known as dynamic load balancing.

In the computation of the aerodynamic influence coefficients, the time required

to calculate the coefficients for each combination of pressure panel radius and control

panel radius is not known a priori. Hence, static load balancing cannot be used

effectively. It was discovered that the computation of the coefficients when control

panel row and the pressure panel row coincide is much more time consuming than

when they do not coincide. This is illustrated in Figure 3 where the computation time

is shown as a fijnction of IRC and IRP, where IRC is the control panel row number

and IRP is the pressure panel row number. The computation times for the

aerodynamic coefficients when IRC _ IRP are approximately equal and significantly

less than when IRC = IRP.

This knowledge about the relative magnitude of calculation time required for

coincident and non-coincident control and pressure panel rows can be used to devise

a load balancing scheme that minimizes processor idling. However, on the FX/80, t.he

14

user has no control over which processor executes which sublask. Subtasksare

selected frorn a pool of subtasksand assigned sequentially to processorsas they

become available. However,by specifying the order of executionof the subtasks,

some control can be exercised over subtask allocation to processors, thus

influencing the load balancing among the processors. Figure 4 illustrates three

possible orders for the evaluationof the kernel functionprior to the calculationof lhe

unsteadyaerodynamic influencecoefficients. The numbers inside circles represent

the sequencenumberof evaluationof kernel functionfor lhe givenvaluesof IRCand

IRP in lhe array. Thus, in evaluationorder (a), the kernel function is evaluated by

proceeding along lhe columns. In evaluation order (b), Ihe kernel function is

evaluated proceeding along the diagonals from bottom left to top right of the array.

Evaluation order (c) is same as (a) except that the lasl column is reversed. The

evaluation order (a) is the original evaluation order used in the sequential code.

Significant idling of the processors is possible if a combination of subtasks,

having large differences in computational times among them, is executing near the

end of the parallel computational phase. From Figure 3 and the previous discussion,

it is clear that this corresponds to a combination of subtasks having coincident and

non-coincident control and pressure panel rows executing near the end of the

aerodynamic coefficient computation. Then, the subtasks having non-coincident

control and pressure panel rows would finish before that having coincident control

and pressure panel rows, thus making significant idling of the processors inevitable.

This is the case for evaluation order (a) in which the last executing subtask, number

81 in Figure 4(a), would necessarily have IRC = IRP. For evaluation orders (b) and

(c), in the subtasks near the end of the parallel computational phase, there would be

no subtask for which IRC = IRP, as long as the number of processors is less than the

number of radial panel rows. Hence, in the absence of any variation in the shared

information access time, the evaluation orders (b) and (c) of Figure 4 would result in

significant reduction of idle time compared to the evaluaton order (a).

15

Table 1 lists the average idle time per processor for the different evaluation

orders as a fraction of ttle total computational time for the aerodynamic coefficients

using 7 processors. It is clear lhat the processor idle time can be significanlly

reduced by modifying the original evaluation order. However, the effect of modifying

the evaluation order is less impressive when the number of panel rows is large. The

difference in the idle times associated wi!h the evaluation orders (b) and (c) is

considered insignificant and is attributed to small differences in the limes required for

the calculation of the kernel function for different combinations of IRC and IRP and to

differences in shared memory access time due to differences in the order of

computation. This difference has very small effect on the speedups associated with

the complete flutter analysis.

Speedup and Efficiency Results

The aeroelastic analysis program was Implemented on the FX/80 using the

evaluation order (c) discussed above. Here, we discuss speedup and efficiency

results obtained with this implementation.

The performance of a parallel implementation is usually measured by speedup

and efficiency. Speedup is the ratio of time used by the program when executed on

a single processor to that used on multiple processors. Efficiency is defined as

speedup divided by the number of processors. Speedup is a measure of the

reduction in the effective calculation time achieved by the parallel algorithm whereas

efficiency is a measure of the processor utilization.

Under ideal circumstances, a perfectly parallelized program will run p times

faster on p available processors, than on a single processor. Thus, the ideal speedup

is given by

16

Sp --=p (11)

and the corresponding efficien(:y would be 100 percent. In practice, however, this is

never achieved because 1) there is some overhead associated with concurrent

processing and 2) there is always some portion of the program which cannot run

concurrently. If c_ is the fraction of parallel code and p the number of processors,

then, under appropriate assumptions (Ortega, 1988), the theoretical speedup is given

by

1
c2_

(12)'-'P = (1 - c0 + _x/p

For this study, _ is the same as the fraction of the total analysis time consumed by

the computation or unsteady aerodynamic coefficients. The actual speedup would

generally be less than that indicated by eq. (12) because of processor idling and

concurrent processing overhead. Thus, the theoretical speedup given by eq. (12)

also provides an upper bound on the speedup that can be achieved even when an

unlimited number of processors are available. Thus,

1
Sp _ 1_-----C_- (13)

This is known as Amdahl's Law. For example, in the case of the flutter analysis of the

SR3C-X2 propfan rotor using 9 panel rows, c_was 0.971 as previously mentioned.

Thus, no matter how many processors there are, the speedup is always less than

34.5.

Table 2 illustrates the speedups and efficiencies achieved for the matched

flutter point evaluation of the SR3C-X2 propfan rotor using evaluation order (c) of

Figure 4 and 7 processors executing concurrently. Fairly high speedups were

achieved due to the large values of c_and the modification of influence coefficient

17

evaluation order for better load balancing. As expected, the efficiency of this

concurrent adaptation is higher when a larger number of panel rows were used in the

analysis. However, impressive speedup and efficiency are oblained even when 9

panel rows were used.

Figure 5 illustrates the performance of this implementation using different

numbers of processors, The ideal and theoretic:al speedups are also shown for

comparison. The theoretical speedup line is close to the ideal speedup line because

lhe bulk of the computational effort is spent ill the parallelized portion of the analysis.

For both the 9 panel rows and the 17 panel rows, the actual speedup line deviates

more from the theoretical and ideal speedup lines for larger number of processors

primarily because of longer processor idling.

Clearly, speedup and efficiency would be improved when the number of

computations for the aerodynamic coefficients increases in comparison to the rest

of the analysis. This would be the case, for example, if the aeroelastic analysis is

performed in the supersonic regime, or if finer paneling is required for analysis.

Figure 5 illustrates that the theoretical speedups as well as the aclual speedups were

higher for the case of 17 panel rows (Figure 5 (b)) than for that for 9 panel rows

(Figure 5(a)). Table 2 shows that, when the number of panel rows was increased

from 9 to 17, the speedup improved 6 percenl from 4.98 to 5.28 for 7 processors.

Conversely, speedup and efficiency of the parallel implementation would

decrease if the number of computations for the aerodynamic coefficients decreases

in comparison to the rest of the analysis. This is the case when the analysis usesa

larger number of modes. For example, Table 2 shows that, when the number of

modes is increased from 2 to 6, the fraction of the program executed in parallel

decreased from 0.971 to 0.910 for 9 panel rows. This resulted in the speedup

decreasing 15 percent from 4.98 to 4,24 for 7 processors.

18

Gains in speedup and efficiency, similar to those obtained in the current

implemenlation, can also be expected in olher aeroelastic analysis procedures, using

the same parallel computational strategy as used here. Adaptation of this strategy is

slraightforward for panel method formulations, e. g., Watkins et al (1959) and Morino

(1980). This is because integral equations sirnilar to eq. (2), relating unsteady

pressure disturbances and normal velocities over the blade, are obtained in all panel

methods, even lhough the kernel function itself may be substantially different.

Concluding Remarks

ASTROP3, an aeroelastic analysis program for propfans, was adapted and

implemented in a shared memory concurrent processing environment and achieved

efficiencies up to 75 percent using 7 processors. Only moderate modification of the

corresponding sequential code was performed by using a high-level approach where

parallel paths were identified in the computationally intensive portion of the

sequential code and parallelized. The calculation of the unsteady aerodynamic

coefficients was concurrentized and the independent concurrent subtasks were

scheduled to reduce processor idle time and improve speedup and efficiency. The

results obtained demonstrate the potential for parallelization of aeroelastic analysis

procedures, particularly those using panel methods for calculating unsteady

aerodynamic forces. The speedup and efficiency gained in the aerodynamic

coefficient computation would also contribute to the overall speedup and efficiency

of an automated multi-disciplinary design procedure of which the aeroelastic analysis

would form a part.

]9

References

Desmarias, R. N., 1982, "An Accurate and Efficient Method for Evaluating the
Kernel of the Integral Equation Relating Pressure to Normal Wash ill Unsteady
Potential Flow", 23rd Structrues, Struclural Dynamics and Materials Conference, New
Orleans, LA, Vol. 2, pp. 243-255.

Kaza, K. R. V., Mehrned, O., Narayanan, G. V. and Murthy, D. V., 1989, "Analytical
Flutter Invesligation of a Composite Propfan Model", Journal of Aircraft, Vol. 26, No.
8, pp. 772-780.

Kaza, K. R. V., Williams, M. H., Mehmed, O. and Narayanan, G. V., 1988,
"Aeroelastic Response of Metallic and Composite Propfan Models in Yawed Flow",
NASA TM-100964.

Merino, L., 1980, "Steady, Oscillatory, and Unsleady Subsonic and Supersonic
Aerodynamics -- Production Version (Soussa P1.1) Vol. 1 -- Theoretical Manual",
NASA CR-159130.

Murthy, D. V. and Kaza, K, R. V., 1989, "A Cornf)utational Procedure Ior Automated
Flutter Analysis", Communications in Applied Numerical Methods, Vol. 5, No. 1, pp.
29-37.

Noor, A. K. and Atluri, S. N., 1987, "Advances and Trends in Computational
Structural Mechanics", AIAA Journal, Vol. 25, No. 7, pp. 977-995.

Ortega, J. M., 1988, Introduction to Parallel and Vector Solution of Linear Systems,
Plenum Press, New York.

Watkins, et al 1959, "A Systematic Kernel Function Procedure for Determining
Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds",
NACA TR R-48.

Williams, M. H. and Hwang, C., 1986, "Three Dimensional Unsteady Aerodynamics
and Aeroelastic Response of Advanced Turboprops", presented at the
AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials
Conference, San Antonio, TX.

Table 1. Average idle times using 7 processors.

Evaluation order

(a)

(b)

Idle time per processor (percent of total time)

9 radial panel rows

9.6

1.1

17 radial panel rows

2.9

0.6

(c) 2.3 0.6

Table 2. Speedup and Efficiency using 7 processors.

No. of
No. of Speedup Efficiencyradial c_ Theoretical
modes ach ieved (percent)

panel rows speedup
..... i

9 2 0.971 5.96 4.98 71.1
L _ . = _

9 6 0.910 4.55 4.24 60.6

17 2 0.977 6.15 5.28 75.4

I 6 0.939 5.12 4.81 68.717
1

20

r2j

rlj
l

0jLE _ TE

j-th PANEL

COMPUTATIONAL
ELEMENTS

INTERACTIVE
PROCESSORS

INPUT/OUTPUT
DEVICES

Figure 2. - System architecture.

Figure 1. - Blade paneling.

1.2

1.1

1.0

.9

.6 ._

.4

.3

.2

987 .1

IRP 0

2 3 4 5

IRC

Figure 3. - Variation of calculation time for influence coefficients
with control (IRC) and pressure (IRP) panel row numbers.

21

IRP

IRP

IRP

IRC
1 2 3

,©@@

,@@@

_®@@

IRC
1 2 3

®®

_®

o©@®

IRC
1 2 3

,©@

0®@

• • 7 8 9

®®@
®@®
®®®

@@@
@@@
@@@

(a)

• 7 8 9

®®®
@@

®

@@
@®®

®@
(b)

• • 7 8 9

®@
@®
®@

(c)

@@
@®
@@

Figure 4. - Three evaluation orders of control
(IRC) and pressure (IRP) panel row numbers
in the calculation of influence coefficients.

22

Q.

E3
LIJ
I.U
O_
00

5

7

1
1

IDEAL
SPEEDUP -"-

THEORETICAL
SPEEDUP

%,

%'--ACTUAL
SPEEDUP

1 1 I I I
(a) g panel rows.

IDEAL
SPEEDUP -_,

THEORETICAL
SPEEDUP --_

%,

"-- ACTUAL
SPEEDUP

! 1 I I i
2 3 4 5 6 7

NUMBER OF PROCESSORS

(b) 17 panel rows.

Figure 5. - Variation of actual and theoretical speedups
with number of available processors.

Report Documentation PageNational Aeronaulics and
Space Administration

Report No.

NASA TM- 102455

Title and Subtitle

Concurrent Processing Adaptation of

Aeroelastic Analysis of Propfans

7. Author(s)

David C. Janetzke and Durbha V. Murthy

2. Government Accession No.

g,

12.

Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

3. Recipient's Catalog No.

5. Report Date

January 1990

6. Performing Organization Code

8. Performing Organization Report No.

E-5105

10. Work Unit No.

505-63-1B

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

David C. Janetzke, NASA Lewis Research Center; Durbha V. Murthy, University of Toledo, Toledo, Ohio 43606
(work performed under NASA Grant NAG3-742) and NASA Resident Research Associate at Lewis Research

Center. Portions of this material will be presented at the 31st Structures, Structural Dynamics and Materials

Conference cosponsored by the AIAA, ASME, ASCE, AHS, and ASC, Long Beach, California, April 2-4, 1990.

16. Abstract

This paper reports on a study involving the adaptation of an advanced aeroelastic analysis program to run

concurrently on a shared memory multiple processor computer. The program uses a three-dimensional compress-

ible unsteady aerodynamic model and blade normal modes to calculate aeroelastic stability and response of

propfan blades. The identification of the computational parallelism within the sequential code and the scheduling

of the concurrent subtasks to minimize processor idle time are discussed. Processor idle time in the calculation of

the unsteady aerodynamic coefficients was reduced by the simple strategy of appropriately ordering the computa-

tions. Speedup and efficiency results are presented for the calculation of the matched flutter point of an

experimental propfan model. The results show that efficiencies above 70 percent can be obtained using the

present implementation with 7 processors. The parallel computational strategy described here is also applicable to

other aeroelastic analysis procedures based on panel methods.

17. Key Words (Suggested by Author(s))

Concurrent processing

Parallel processing

Aeroelastic analysis

Propfans

18, Distribution Statement

Unclassified - Unlimited

Subject Category 39

19. Security Classif. (of this report) [20. Security Classif. (of this page) 21. No. of pages

Unclassified I Unclassified 22

NASAFORM162SOCT8,8 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price*

A03

